Script testing different distance metrics to estimate beta diversity using the whole and core fish gut communities across a range of environmental variables.
Next, we turn our attention to beta diversity estimates of fish guts. For both the whole community (i.e., all ASVs) and the core community (i.e., only core ASVs), we assess beta diversity against the following conditions:
For each condition or combination of conditions, we perform the following beta diversity estimates: Jaccard, Modified Gower, Bray Curtis, UNIFRAC, GUNIFRAC, WUNIFRAC. For each diversity metric, we a) calculate a dissimilarity matrix, b) assess beta dispersions, c) run a PERMANOVA, and in some cases, d) look at pairwise comparisons.
First, we load the rarefied whole fish gut microbiome data.
ps.whole <- readRDS("rdata/p3/ps_16S_bocas_fish_final.rds")
set.seed(1911)
type.jaccard <- phyloseq::distance(ps.whole, method = "jaccard", binary = T)
sampledf <- data.frame(sample_data(ps.whole))
ps.whole.inner <- subset_samples(ps.whole, Zone != "Outer bay")
type.jaccard.inner <- phyloseq::distance(ps.whole.inner,
method = "jaccard", binary = T)
sampledf.inner <- data.frame(sample_data(ps.whole.inner))
beta.jaccard1 <- betadisper(type.jaccard, sampledf$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.jaccard1, binary = TRUE, pairwise = TRUE,
permutations = 10000)
beta.jaccard2 <- betadisper(type.jaccard, sampledf$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.jaccard2, binary = TRUE, pairwise = TRUE,
permutations = 10000)
beta.jaccard3 <- betadisper(type.jaccard.inner, sampledf.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.jaccard3, binary = TRUE, pairwise = TRUE,
permutations = 10000)
adonis.jaccard0 <- adonis(type.jaccard ~ Zone, data = sampledf,
permutations = 10000)
adonis.jaccardR <- adonis(type.jaccard ~ Reef, data = sampledf,
permutations = 10000)
adonis.jaccard1<- adonis(type.jaccard ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.jaccard2 <- adonis(type.jaccard ~ Position/Reef, data = sampledf,
permutations = 10000)
The variable reef type is healthy and disturbed (based on level coral cover).
adonis.jaccard3 <- adonis(type.jaccard.inner ~ Reef_type/Reef,
data = sampledf.inner, permutations = 10000)
pairwise1 <- pairwise.adonis(type.jaccard, factors = sampledf$Zone)
pairwise2 <- pairwise.adonis(type.jaccard, factors = sampledf$Reef)
For the modified Gower, we log transform the data using the microbiome package transformation because it uses the vegan deconstand
function. The distance matrix will be created from the log transformed data.
set.seed(1911)
data.log10<- microbiome::transform(ps.whole, transform = "log10p")
sampledf.log10 <- data.frame(sample_data(data.log10))
type.modGower <- phyloseq::distance(data.log10, method = "altGower")
beta.Gower1 <- betadisper(type.modGower, sampledf.log10$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.Gower1, pairwise = TRUE, permutations = 10000)
beta.GowerR <- betadisper(type.modGower, sampledf.log10$Reef,
type = "centroid", bias.adjust = TRUE)
permutest(beta.GowerR, pairwise = TRUE, permutations = 10000)
beta.Gower2 <- betadisper(type.modGower, sampledf.log10$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.Gower2, pairwise = TRUE, permutations = 10000)
data.log10.inner <- subset_samples(data.log10, Zone != "Outer bay")
type.modGower.inner <- phyloseq::distance(data.log10.inner, method = "altGower")
sampledf.inner <- data.frame(sample_data(data.log10.inner))
beta.Gower3 <- betadisper(type.modGower.inner, sampledf.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.Gower3, binary = TRUE, pairwise = TRUE,
permutations = 10000)
set.seed(1911)
adonis.modGower0 <- adonis(type.modGower ~ Zone, data = sampledf.log10,
permutations = 10000)
adonis.modGowerR <- adonis(type.modGower ~ Reef, data = sampledf.log10,
permutations = 10000)
adonis.modGower1 <- adonis(type.modGower ~ Zone/Reef, data = sampledf.log10,
permutations = 10000)
adonis.modGower2 <- adonis(type.modGower ~ Position/Reef, data = sampledf.log10,
permutations = 10000)
data.log10.inner <- subset_samples(data.log10, Zone != "Outer bay")
type.modGower.inner <- phyloseq::distance(data.log10.inner, method = "altGower")
sampledf.inner.log10 <- data.frame(sample_data(data.log10.inner))
adonis.modGower3 <- adonis(type.modGower.inner ~ Reef_type/Reef,
data = sampledf.inner.log10, permutations = 10000)
set.seed(1911)
pairwise.adonis(type.modGower, factors = sampledf$Zone)
set.seed(1911)
pairwise.adonis(type.modGower, factors = sampledf$Reef)
set.seed(1911)
type.bray <- phyloseq::distance(ps.whole, method = "bray")
sampledf <- data.frame(sample_data(ps.whole))
beta.bray1 <- betadisper(type.bray, sampledf$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.bray1, pairwise = TRUE, permutations = 10000)
beta.brayR <- betadisper(type.bray, sampledf$Reef,
type = "centroid", bias.adjust = TRUE)
permutest(beta.brayR, pairwise = TRUE, permutations = 10000)
beta.bray2 <- betadisper(type.bray, sampledf$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.bray2, pairwise = TRUE, permutations = 10000)
ps.whole.inner <- subset_samples(ps.whole, Zone != "Outer bay")
type.bray.inner <- phyloseq::distance(ps.whole.inner, method = "bray")
beta.bray3 <- betadisper(type.bray.inner, sampledf.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.bray3, pairwise = TRUE, permutations = 10000)
set.seed(1911)
adonis.bray0 <- adonis(type.bray ~ Zone, data = sampledf,
permutations = 10000)
adonis.brayR <- adonis(type.bray ~ Reef, data = sampledf,
permutations = 10000)
adonis.bray1 <- adonis(type.bray ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.bray2 <- adonis(type.bray ~ Position/Reef, data = sampledf,
permutations = 10000)
ps.whole.inner <- subset_samples(ps.whole, Zone != "Outer bay")
type.bray.inner <- phyloseq::distance(ps.whole.inner, method = "bray")
sampledf.inner <- data.frame(sample_data(ps.whole.inner))
adonis.bray3 <- adonis(type.bray.inner ~ Reef_type/Reef, data = sampledf.inner,
permutations = 10000)
set.seed(1911)
pairwise.adonis(type.bray, factors = sampledf$Zone)
set.seed(1911)
pairwise.adonis(type.bray, factors = sampledf$Reef)
set.seed(1911)
type.unifrac <- phyloseq::distance(ps.whole, method = "unifrac", weighted = F)
sampledf <- data.frame(sample_data(ps.whole))
beta.unifrac1 <- betadisper(type.unifrac, sampledf$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.unifrac1, pairwise = TRUE, permutations = 10000)
beta.unifracR <- betadisper(type.unifrac, sampledf$Reef,
type = "centroid", bias.adjust = TRUE)
permutest(beta.unifracR, pairwise = TRUE, permutations = 10000)
beta.unifrac2 <- betadisper(type.unifrac, sampledf$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.unifrac2, pairwise = TRUE, permutations = 10000)
ps.whole.inner <- subset_samples(ps.whole, Zone != "Outer bay")
type.unifrac.inner <- phyloseq::distance(ps.whole.inner, method = "unifrac")
sampledf.whole.inner <- data.frame(sample_data(ps.whole.inner))
beta.unifrac3 <- betadisper(type.unifrac.inner, sampledf.whole.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.unifrac3, pairwise = TRUE, permutations = 10000)
set.seed(1911)
adonis.unifrac0 <- adonis(type.unifrac ~ Zone, data = sampledf,
permutations = 10000)
adonis.unifracR <- adonis(type.unifrac ~ Reef, data = sampledf,
permutations = 10000)
adonis.unifrac1 <- adonis(type.unifrac ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.unifrac2 <- adonis(type.unifrac ~ Position/Reef, data = sampledf,
permutations = 10000)
ps.whole.inner <- subset_samples(ps.whole, Zone != "Outer bay")
type.unifrac.inner <- phyloseq::distance(ps.whole.inner, method = "unifrac")
sampledf.inner <- data.frame(sample_data(ps.whole.inner))
adonis.unifrac3 <- adonis(type.unifrac.inner ~ Reef_type/Reef,
data = sampledf.inner, permutations = 10000)
set.seed(1911)
pairwise.adonis(type.unifrac, factors = sampledf$Zone)
set.seed(1911)
pairwise.adonis(type.unifrac, factors = sampledf$Reef)
asv.tab<-otu_table(ps.whole)
ps.whole.inner <- subset_samples(ps.whole, Zone != "Outer bay")
asv.tab.inner <- otu_table(ps.whole.inner)
tree.fish<-phy_tree(ps.whole)
tree.fish.inner<-phy_tree(ps.whole.inner)
fish.sample<-sample_data(ps.whole)
fish.sample.inner<-sample_data(ps.whole.inner)
groups2.whole <- fish.sample$Zone
groupsR.whole <- fish.sample$Reef
groups.inner <- fish.sample.inner$Zone
position.whole <- fish.sample$Position
unifracs <- GUniFrac(asv.tab, tree.fish,
alpha=c(0, 0.5, 1))$unifracs
unifracs.inner <- GUniFrac(asv.tab.inner, tree.fish.inner,
alpha=c(0, 0.5, 1))$unifracs
d5.all <- unifracs[, , "d_0.5"]
d5.inner <- unifracs.inner[, , "d_0.5"]
type.gunifrac <- as.dist(d5.all)
type.gunifrac.inner <- as.dist(d5.inner)
set.seed(1911)
beta.gunifrac1 <- betadisper(as.dist(d5.all), groups2.whole,
type = "centroid", bias.adjust = TRUE)
permutest(beta.gunifrac1, pairwise = TRUE, permutations = 10000)
beta.gunifracR <- betadisper(as.dist(d5.all), groupsR.whole,
type = "centroid", bias.adjust = TRUE)
permutest(beta.gunifracR, pairwise = TRUE, permutations = 10000)
beta.gunifrac2 <- betadisper(as.dist(d5.all), position.whole,
type = "centroid", bias.adjust = TRUE)
permutest(beta.gunifrac2, pairwise = TRUE, permutations = 10000)
beta.gunifrac.inner <- betadisper(as.dist(d5.inner), groups.inner,
type = "centroid", bias.adjust = TRUE)
permutest(beta.gunifrac.inner, pairwise = TRUE, permutations = 10000)
sampledf <- data.frame(sample_data(ps.whole))
sampledf.inner <- data.frame(sample_data(ps.whole.inner))
adonis.gunifrac1<- adonis(type.gunifrac ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.gunifrac2<- adonis(type.gunifrac ~ Position/Reef, data = sampledf,
permutations = 10000)
adonis.gunifrac3<- adonis(type.gunifrac.inner ~ Reef_type/Reef,
data = sampledf.whole.inner, permutations = 10000)
as a substitute for posthoc test of PERMANOVA
pairwise.adonis(type.gunifrac, factors = sampledf$Zone,
p.adjust.m = "bonferroni")
pairwise.adonis(type.gunifrac, factors = sampledf$Reef,
p.adjust.m = "bonferroni")
set.seed(1911)
type.wunifrac <- phyloseq::distance(ps.whole, method = "wunifrac")
sampledf <- data.frame(sample_data(ps.whole))
beta.wunifrac1 <- betadisper(type.wunifrac, sampledf$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.wunifrac1, pairwise = TRUE, permutations = 10000)
beta.wunifracR <- betadisper(type.wunifrac, sampledf$Reef,
type = "centroid", bias.adjust = TRUE)
permutest(beta.wunifracR, pairwise = TRUE, permutations = 10000)
beta.wunifrac2 <- betadisper(type.wunifrac, sampledf$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.wunifrac2, pairwise = TRUE, permutations = 10000)
ps.whole.inner <- subset_samples(ps.whole, Zone != "Outer bay")
type.wunifrac.inner <- phyloseq::distance(ps.whole.inner, method = "wunifrac")
sampledf.inner <- data.frame(sample_data(ps.whole.inner))
beta.wunifrac3 <- betadisper(type.wunifrac.inner, sampledf.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.wunifrac3, pairwise = TRUE, permutations = 10000)
set.seed(1911)
adonis.wunifrac0 <- adonis(type.wunifrac ~ Zone, data = sampledf,
permutations = 10000)
adonis.wunifracR <- adonis(type.wunifrac ~ Reef, data = sampledf,
permutations = 10000)
adonis.wunifrac1 <- adonis(type.wunifrac ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.wunifrac2 <- adonis(type.wunifrac ~ Position/Reef, data = sampledf,
permutations = 10000)
set.seed(1911)
pairwise.adonis(type.wunifrac, factors = sampledf$Zone)
set.seed(1911)
pairwise.adonis(type.wunifrac, factors = sampledf$Reef)
First, we load the unrarefied core fish gut microbiome data.
ps.core <- readRDS("rdata/p1/ps_indv01_core_fish.rds")
ps.core
set.seed(1911)
type.jaccard <- phyloseq::distance(ps.core, method = "jaccard", binary = T)
sampledf <- data.frame(sample_data(ps.core))
ps.core.inner <- subset_samples(ps.core, Zone != "Outer bay")
type.jaccard.inner <- phyloseq::distance(ps.core.inner,
method = "jaccard", binary=T)
sampledf.inner <- data.frame(sample_data(ps.core.inner))
beta.jaccard1 <- betadisper(type.jaccard, sampledf$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.jaccard1, binary = TRUE, pairwise = TRUE, permutations = 10000)
beta.jaccard2 <- betadisper(type.jaccard, sampledf$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.jaccard2, binary = TRUE, pairwise = TRUE, permutations = 10000)
beta.jaccard3 <- betadisper(type.jaccard.inner, sampledf.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.jaccard3, binary = TRUE, pairwise = TRUE, permutations = 10000)
adonis.jaccard0<- adonis(type.jaccard ~ Zone, data = sampledf,
permutations = 10000)
adonis.jaccardR<- adonis(type.jaccard ~ Reef, data = sampledf,
permutations = 10000)
#by Zone with Reef nested in Zone
adonis.jaccard1<- adonis(type.jaccard ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.jaccard2 <- adonis(type.jaccard ~ Position/Reef, data = sampledf,
permutations = 10000)
adonis.jaccard3 <- adonis(type.jaccard.inner ~ Reef_type/Reef,
data = sampledf.inner, permutations = 10000)
set.seed(1911)
pairwise1 <- pairwise.adonis(type.jaccard, factors = sampledf$Zone)
pairwise2 <- pairwise.adonis(type.jaccard, factors = sampledf$Reef)
Again, for the modified Gower, we log transform the data using the microbiome package transformation because it uses the vegan deconstand
function. The distance matrix will be created from the log transformed data.
set.seed(1911)
data.log10<- microbiome::transform(ps.core, transform = "log10p")
sampledf.log10 <- data.frame(sample_data(data.log10))
type.modGower <- phyloseq::distance(data.log10, method = "altGower")
beta.Gower1 <- betadisper(type.modGower, sampledf.log10$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.Gower1, pairwise = TRUE, permutations = 10000)
beta.GowerR <- betadisper(type.modGower, sampledf.log10$Reef,
type = "centroid", bias.adjust = TRUE)
permutest(beta.GowerR, pairwise = TRUE, permutations = 10000)
beta.Gower2 <- betadisper(type.modGower, sampledf.log10$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.Gower2, pairwise = TRUE, permutations = 10000)
data.log10.inner <- subset_samples(data.log10, Zone != "Outer bay")
type.modGower.inner <- phyloseq::distance(data.log10.inner,
method = "altGower")
sampledf.inner <- data.frame(sample_data(data.log10.inner))
beta.Gower3 <- betadisper(type.modGower.inner, sampledf.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.Gower3, binary = TRUE, pairwise = TRUE, permutations = 10000)
set.seed(1911)
adonis.modGower0 <- adonis(type.modGower ~ Zone, data = sampledf.log10,
permutations = 10000)
adonis.modGowerR <- adonis(type.modGower ~ Reef, data = sampledf.log10,
permutations = 10000)
adonis.modGower1 <- adonis(type.modGower ~ Zone/Reef, data = sampledf.log10,
permutations = 10000)
adonis.modGower2 <- adonis(type.modGower ~ Position/Reef, data = sampledf.log10,
permutations = 10000)
data.log10.inner <- subset_samples(data.log10, Zone != "Outer bay")
type.modGower.inner <- phyloseq::distance(data.log10.inner, method = "altGower")
sampledf.inner.log10 <- data.frame(sample_data(data.log10.inner))
adonis.modGower3 <- adonis(type.modGower.inner ~ Reef_type/Reef,
data = sampledf.inner.log10, permutations = 10000)
pairwise.adonis(type.modGower, factors = sampledf$Zone)
pairwise.adonis(type.modGower, factors = sampledf$Reef)
set.seed(1911)
type.bray <- phyloseq::distance(ps.core, method = "bray")
sampledf <- data.frame(sample_data(ps.core))
beta.bray1 <- betadisper(type.bray, sampledf$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.bray1, pairwise = TRUE, permutations = 10000)
beta.brayR <- betadisper(type.bray, sampledf$Reef,
type = "centroid", bias.adjust = TRUE)
permutest(beta.brayR, pairwise = TRUE, permutations = 10000)
beta.bray2 <- betadisper(type.bray, sampledf$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.bray2, pairwise = TRUE, permutations = 10000)
ps.core.inner <- subset_samples(ps.core, Zone != "Outer bay")
type.bray.inner <- phyloseq::distance(ps.core.inner, method = "bray")
beta.bray3 <- betadisper(type.bray.inner, sampledf.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.bray3, pairwise = TRUE, permutations = 10000)
set.seed(1911)
adonis.bray0 <- adonis(type.bray ~ Zone, data = sampledf,
permutations = 10000)
adonis.brayR <- adonis(type.bray ~ Reef, data = sampledf,
permutations = 10000)
adonis.brayR
adonis.bray1 <- adonis(type.bray ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.bray2 <- adonis(type.bray ~ Position/Reef, data = sampledf,
permutations = 10000)
ps.core.inner <- subset_samples(ps.core, Zone != "Outer bay")
type.bray.inner <- phyloseq::distance(ps.core.inner, method = "bray")
sampledf.inner <- data.frame(sample_data(ps.core.inner))
adonis.bray3 <- adonis(type.bray.inner ~ Reef_type/Reef, data = sampledf.inner,
permutations = 10000)
set.seed(1911)
pairwise.adonis(type.bray, factors = sampledf$Zone)
set.seed(1911)
pairwise.adonis(type.bray, factors = sampledf$Reef)
set.seed(1911)
type.unifrac <- phyloseq::distance(ps.core, method = "unifrac", weighted=F)
sampledf <- data.frame(sample_data(ps.core))
beta.unifrac1 <- betadisper(type.unifrac, sampledf$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.unifrac1, pairwise = TRUE, permutations = 10000)
beta.unifracR <- betadisper(type.unifrac, sampledf$Reef,
type = "centroid", bias.adjust = TRUE)
permutest(beta.unifracR, pairwise = TRUE, permutations = 10000)
beta.unifrac2 <- betadisper(type.unifrac, sampledf$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.unifrac2, pairwise = TRUE, permutations = 10000)
ps.core.inner <- subset_samples(ps.core, Zone != "Outer bay")
type.unifrac.inner <- phyloseq::distance(ps.core.inner, method = "unifrac")
sampledf.core.inner <- data.frame(sample_data(ps.core.inner))
beta.unifrac3 <- betadisper(type.unifrac.inner, sampledf.core.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.unifrac3, pairwise = TRUE, permutations = 10000)
set.seed(1911)
adonis.unifrac0 <- adonis(type.unifrac ~ Zone, data = sampledf,
permutations = 10000)
adonis.unifracR <- adonis(type.unifrac ~ Reef, data = sampledf,
permutations = 10000)
adonis.unifrac1 <- adonis(type.unifrac ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.unifrac2 <- adonis(type.unifrac ~ Position/Reef, data = sampledf,
permutations = 10000)
ps.core.inner <- subset_samples(ps.core, Zone != "Outer bay")
type.unifrac.inner <- phyloseq::distance(ps.core.inner, method = "unifrac")
sampledf.inner <- data.frame(sample_data(ps.core.inner))
adonis.unifrac3 <- adonis(type.unifrac.inner ~ Reef_type/Reef,
data = sampledf.inner,
permutations = 10000)
set.seed(1911)
pairwise.adonis(type.unifrac, factors = sampledf$Zone)
set.seed(1911)
pairwise.adonis(type.unifrac, factors = sampledf$Reef)
asv.tab<-otu_table(ps.core)
ps.core.inner <- subset_samples(ps.core, Zone != "Outer bay")
asv.tab.inner <- otu_table(ps.core.inner)
tree.fish.core<-phy_tree(ps.core)
tree.fish.core.inner<-phy_tree(ps.core.inner)
fish.sample.core<-sample_data(ps.core)
fish.sample.core.inner<-sample_data(ps.core.inner)
groups2.core <- fish.sample.core$Zone
groupsR.core <- fish.sample.core$Reef
groups.inner.core <- fish.sample.core.inner$Zone
position.core <- fish.sample.core$Position
unifracs <- GUniFrac(asv.tab, tree.fish.core,
alpha=c(0, 0.5, 1))$unifracs
unifracs2 <- GUniFrac(asv.tab.inner, tree.fish.core.inner,
alpha=c(0, 0.5, 1))$unifracs
d5.all <- unifracs[, , "d_0.5"]
d5.inner <- unifracs2[, , "d_0.5"]
type.gunifrac <- as.dist(d5.all)
type.gunifrac.inner <- as.dist(d5.inner)
set.seed(1911)
beta.gunifrac1 <- betadisper(as.dist(d5.all), groups2.core,
type = "centroid", bias.adjust = TRUE)
permutest(beta.gunifrac1, pairwise = TRUE, permutations = 10000)
beta.gunifracR <- betadisper(as.dist(d5.all), groupsR.core,
type = "centroid", bias.adjust = TRUE)
permutest(beta.gunifracR, pairwise = TRUE, permutations = 10000)
beta.gunifrac2 <- betadisper(as.dist(d5.all), position.core,
type = "centroid", bias.adjust = TRUE)
permutest(beta.gunifrac2, pairwise = TRUE, permutations = 10000)
beta.gunifrac.inner <- betadisper(as.dist(d5.inner), groups.inner.core,
type = "centroid", bias.adjust = TRUE)
permutest(beta.gunifrac.inner, pairwise = TRUE, permutations = 10000)
sampledf <- data.frame(sample_data(ps.core))
sampledf.inner <- data.frame(sample_data(ps.core.inner))
adonis.gunifrac0<- adonis(type.gunifrac ~ Zone, data = sampledf,
permutations = 10000)
adonis.gunifracR<- adonis(type.gunifrac ~ Zone, data = sampledf,
permutations = 10000)
adonis.gunifrac1<- adonis(type.gunifrac ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.gunifrac2<- adonis(type.gunifrac ~ Position/Reef, data = sampledf,
permutations = 10000)
adonis.gunifrac3<- adonis(type.gunifrac.inner ~ Reef_type/Reef,
data = sampledf.core.inner, permutations = 10000)
pairwise.adonis(type.gunifrac, factors = sampledf$Zone,
p.adjust.m = "bonferroni")
pairwise.adonis(type.gunifrac, factors = sampledf$Reef,
p.adjust.m = "bonferroni")
set.seed(1911)
type.wunifrac <- phyloseq::distance(ps.core, method = "wunifrac")
sampledf <- data.frame(sample_data(ps.core))
beta.wunifrac1 <- betadisper(type.wunifrac, sampledf$Zone,
type = "centroid", bias.adjust = TRUE)
permutest(beta.wunifrac1, pairwise = TRUE, permutations = 10000)
ps.core.inner <- subset_samples(ps.core, Zone != "Outer bay")
type.wunifrac.inner <- phyloseq::distance(ps.core.inner, method = "wunifrac")
sampledf.inner <- data.frame(sample_data(ps.core.inner))
beta.wunifracR <- betadisper(type.wunifrac, sampledf$Reef,
type = "centroid", bias.adjust = TRUE)
permutest(beta.wunifracR, pairwise = TRUE, permutations = 10000)
beta.wunifrac2 <- betadisper(type.wunifrac, sampledf$Position,
type = "centroid", bias.adjust = TRUE)
permutest(beta.wunifrac2, pairwise = TRUE, permutations = 10000)
beta.wunifrac3 <- betadisper(type.wunifrac.inner, sampledf.inner$Reef_type,
type = "centroid", bias.adjust = TRUE)
permutest(beta.wunifrac3, pairwise = TRUE, permutations = 10000)
set.seed(1911)
adonis.wunifrac0 <- adonis(type.wunifrac ~ Zone, data = sampledf,
permutations = 10000)
adonis.wunifracR <- adonis(type.wunifrac ~ Reef, data = sampledf,
permutations = 10000)
adonis.wunifrac1 <- adonis(type.wunifrac ~ Zone/Reef, data = sampledf,
permutations = 10000)
adonis.wunifrac2 <- adonis(type.wunifrac ~ Position/Reef, data = sampledf,
permutations = 10000)
ps.core.inner <- subset_samples(ps.core, Zone != "Outer bay")
type.wunifrac.inner <- phyloseq::distance(ps.core.inner, method = "wunifrac")
sampledf.inner <- data.frame(sample_data(ps.core.inner))
adonis.wunifrac3 <- adonis(type.wunifrac.inner ~ Reef_type/Reef,
data = sampledf.inner, permutations = 10000)
pairwise.adonis(type.wunifrac, factors = sampledf$Zone)
pairwise.adonis(type.wunifrac, factors = sampledf$Reef)
That’s the end of Script 5. In the next Script we assess Beta Dispersion for all beta diversity estimates.
The source code for this page can be accessed on GitHub by clicking this link.
If you see mistakes or want to suggest changes, please create an issue on the source repository.
Text and figures are licensed under Creative Commons Attribution CC BY 4.0. Source code is available at https://github.com/bocasbiome/web/, unless otherwise noted. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".